ДНК-геликазы
создание документов онлайн
Документы и бланки онлайн

Обследовать

Администрация
Механический Электроника
биологии ботаника
география
дом в саду
история
литература
маркетинг
математике
медицина
музыка
образование
психология
разное
художественная культура
экономика




















































ДНК-геликазы

биологии


Отправить его в другом документе Tab для Yahoo книги - конечно, эссе, очерк Hits: 1115


дтхзйе дплхнеофщ

Закон глобальности жизни, или первый закон Вернадского
Тип Членистоногие – Arthropoda - Подтип Хелицеровые - Chelicerata - Класс Паукообразные – Arachnida
Мутационная изменчивость
ДНК-топоизомеразы
Технология рекомбинантных ДНК
РАБОТА СЕРДЦА
Клеточный цикл эукариот
Особенности профазы I мейотического деления
Эндорепродукция и полиплоидия
Мышечные клетки
 

ДНК-геликазы

1. Общая характеристика геликаз

Геликазами называются ферменты, способные расплетать две комплементарные нити дуплексов нуклеиновых кислот с использованием энергии, полученной при гидролизе 5’-НТФ. Геликазы могут расплетать днДНК (ДНК-геликазы), днРНК (РНК-геликазы) или гибриды ДНК-РНК (например, бактериальный фактор терминации транскрипции Rho). Расплетание шпилечных двунитевых участков РНК играет важную роль в трансляции, сплайсинге и регуляции трапнскрипции. Мы будем рассматривать только ДНК-геликазыы, которые обеспечивают образование однонитевых матриц или интемедиатов ДНК, требующихся для репликации, рекомбинации и репарации ДНК.

ДНК-геликазы являются моторными белками, сопрягающими гидролиз НТФ с дестабилизацией водородных связей в дуплексах ДНК. ДНК-геликазы могут однонаправленно транслоцироваться вдоль нити ДНК независимо от её нуклеотидной последовательности и процессивно расплетать днДНК со скоростью до 500-1000 п.н./сек. Большинство ДНК-геликаз не проявляет строгой специфичности в отношении НТФ и дНТФ.Одни из них чаще использует для геликазной активности дТТФ, другие – ГТФ и АТФ, а третьи предпочитают АТФ. (д)НТФазная активность является обязательным каталитическим свойством геликаз. Энергия гидролиза (д)НТФ используется ими для изменения конформационных состояний молекулы самого фермента во время транлокации и расплетания ДНК.

Почти все ДНК-геликазы предпочитают инициировать расплетание in vitro дуплексов ДНК, имеющих флановую область онДНК, которая облегчает образование комплекса с ДНК («посадку» геликазы на ДНК) и служит сайтом инициации в реакции расплетания. ДНК-геликазы проявляют определенную полярность в расплетании: одни предпочитают дуплекс ДНК с 3’-флаговой, а другие - с 5’-фланговой однонитевой областью. Исключение  составляет гетеротримерный фермент репликации RecBCD E. coli, предпочитающий расплетать днДНК с тупыми концами. Остальные ДНК-геликазы являются «полярными». Для определения их полярности используют субстрат ДНК, в контором центальный участоек онДНК фланкирован на обоих концах дуплексными областями (рис. 2.01). Если расплетание происходит в дуплексе А, геликаза имеет полярность 5’®3’. Если же преимущественно расплетается дуплекс В, геликазе приписывают полярность3’®5’. Расплетающая активность некоторых ДНК-геликаз (например, белка DnaB E. coli) стимулируется, если субстрат имеет «вилочную» структуру, т.е. содержит на стыке с дуплексом одновременно 3’- и 5’-однонитевые области. Это показывает, что в структурах репликативных вилок ДНК-геликаза может взаимодействовать с обеими расплетенными нитями ДНК.



                A                                                                    B

                                       5’®3’                        3’®5’                                   


        3’                                                                                                                                5’

Рис.  Схема субстрата ДНК для определения полярности ДНК-геликаз 

Все ДНК-геликазы образуют олигомерные активные структуры, преимущественно димеры или гексамеры из одинаковых или (гораздо реже) разных субъединиц. Даже такая ДНК-геликаза, как белок Rep E. coli, в свободном состоянии находящийся в мономерной форме, при связывании с ДНК образует димеры и активна в димерной форме. Главные ДНК-геликазы, участвующие в репликации ДНК, являются гексамерными ферментами.

Компьютерный анализ ДНК-геликаз из различных организмов обнаружил короткие консервативные аминокислотные последовательности, названные “геликазными мотивами”, и позволил разбить эти ферменты на три суперсмейства (SF-1, SF-2 и SF-3) и одно небольшое семейство (F-4). Число таких консервативных мотивов составляет от 3 у суперсемейства 3, в которое в основном входят вируксные геликазы, до 7 у суперсемейств 1 и 2. Два из этих мотивов необходимы для связывания и гидролиза НТФ. Они встретились и ранее у связывающих АТФ белков (в частности, у АТФаз) и были названы мотивами Уокера (J. Walker) типов А и В.

Мотив А с консенсусной последовательностью GK(T/S) образует так называемую Р-петлю в сайте связывания АТФ. Особенно важен остаток лизина (K), боковая аминогруппа которого контактивует с b-фосфатом связанного комплекса Mg2+-АТФ и стабилизирует переходное состояние во время катализа. Мотив В содержит инвариантный остаток аспарагиновой кислоты (D), рядом с которым у некоторых суперсемейств расположен второй кислый остаток глутаминовой кислоты (E) в мотиве DExH. Остаток асп координационно связывает ассоциированный с АТФ катион Mg2+ и активирует атакующую фосфодиэфирную связь молекулу воды. Эти два мотива АТФазного центра абсолютно необходимы, но не достаточны для геликазной активности. Роль остальных геликазных мотивов не определена однозначно. Некоторые из них могут связывать адениновое кольцо АТФ или g-фосфатную группу НТФ. Другие консервативные мотивы геликаз могут участвовать в ассоциакции ДНК-геликаз с сахарофосфатным остовом или основаниями ДНК или в передаче индукциованных НТФ или НДФ конформационных изменений к сайту связывания с ДНК в геликазе.

Поиски белков, имеющих консервативные геликазные мотивы, в базах данных полностью секвенированных геномов показал, что около 1% генов у всех организмов кодирует потенциальные геликазы. В частности, в геноме E. coli cодержится около 50 таких генов. Свойства и функции главных ДНК-геликаз E. coli приведены в табл.

 Таблица 2.1

Главные ДНК-геликазы E. coli

Фермент

Ген

Положение на генетической

карте (мин)

ММол.масса (кД)

Поляр-

ность

Структура

Функции

Cемей-

ство

Геликаза I

traI

F-плазмида

194,1

5’®3’

олигомер

конъюгативный

синтез ДНК

SF-1

Геликаза II

uvrD

84

82,1

3’®5’

димер

репарация,

рекомбинация

SF-1

Геликаза III

rep

84

72,8

3’®5’

димер

(на ДНК)

репликация фагов

с онДНК

SF-1

Геликаза IV

helD

22

78,0

3’®5’

?

рекомбинация,

репарация



DnaB

dnaВ

92

52,4

5’®3’

гексамер

главная геликаза

репликации ДНК

F-4

PriA

priA

88

81,7

3’®5’

репликация

SF-2

RuvB

ruvB

41

37,2

5’®3’

двойной

гексамер

рекомбинация

(геликаза холиде-

евских стыков)

ААА+

RecQ

recQ

68,4

3’®5’

гексамер(?)

рекомбинация

SF-2

RecG

recG

82

76,4

3’®5’ и

5’®3’

?

рекомбинация,

репликация

RecBCD

recB

recC

recD

60

60

60

1139

129,0

66,0

днДНК

с тупыми

концами

гетеро-

тример

рекомбинация,

репарация

SF-1

UvrAB

uvrA

uvrB

92

18

103,8

76,1

5’®3’

гетеротри-

мер А2В

нуклеотидная

эксцизионная

репарация

SF-2

Rho*

rho



85

47,0

5’®3’

гексамер

терминация

транскрипции

F1-

АТФ-аза

·         * - РНК-геликаза

Эти геликазы участвуют во всех основных процессах метаболизма ДНК и проявляют определенную специализацию. Так, геликаза, состоящая из субъединиц  A и B эксцинуклеазы UvrABC специализируется на нуклеотидной эксцизионной репарации, а образующая двойные гексамеры геликаза RuvB катализирует одну из важнейших стадий рекомбинации – миграцию ветвей ДНК в так называемых холидеевских структурах. Среди этих ферментов наиболее важной для процессов инициации и элонгации в репликации ДНК является ДНК-геликаза DnaB.

2. Свойства репликативной ДНК-геликазы DnaB E. coli

ДНК-геликаза DnaB имеет длину 471 аминокислотный остаток (мол. масса 52,4 кД) и кодируется геном dnaB (92-ая мин генетической карты). Количество молекул белка DnaB на клетку составляет ~20. Белок DnaB является гексамерной геликазой с полярностью 5’®3’. В репликативных вилках ДНК-геликаза DnaB придает холоферменту ДНК-полимеразы способность вести синтез ДНК с высокой физиологической скоростью (~ 700 п.н./мин). Геликаза DnaB предпочитает вилочные субстраты ДНК, у которых длина 5’-хвоста превышает 20 н., а длина 3’-хвоста – 5 н. Она связывается с 5’-однонитевой областью ДНК со стехиометрией 20±3 н. на гексамер DnaB.

Белок DnaB входит в геликазное семейство F-4, к которому относятся также геликазы gp4 фага Т7 и gp41 фага Т4. Это семейство имеет 4 консервативных геликазных мотива, включая мотивы Уокера типов А и В. Отметим, что аналогичные 4 мотива имеются у главного белка рекомбинации RecA. Молекула DnaB состоит из двух частей: N-концевого домена I с мол.м. 12 кД и С-концевой области доменов III+IV c мол.м. 33 кД (рис. 2.2). Эти части DnaB  соединены друг с другом гибким линкером (домен II).

N-концевой домен I имеет преимущественно a-спиральную структуру и участвует в белок-белковых взаимодействиях. С этой областью DnaB связываются белок-инициатор репликации DnaА (см. гл. 3) и праймаза DnaG (см. 2.3). Для взаимодействия с DnaG  существенны также линкерная область II и часть домена III. С-концевую часть DnaВ можно разбить на два функциональных домена (III и IV). Центральный домен III может связывать и гидролизовать АТФ в отсутствие других областей DnaВ. В домене III расположены последовательности Уокера типов А (мотив Н1) и В (мотив Н2), входящие в состав НТФазного активного центра DnaВ. В этих мотивах находятся важные для связывания и гидролиза АТФ остатки K237 и T238 в мотиве Н1 и D343 в мотиве Н2. Домен IV содержит дополнительные контактные участки для НТФ и участвует в связывании с ДНК. Для геликазной активности требуются все домены DnaВ.

    1   22                              138    174                                                   345                                             471            

N                   I                     II                       III                                                   IV                    C                       


                                                                              H1    H1a           H2            H3         H4

                      DnaG                         DnaA

Рис. 2.2. Схема организации функциональных областей ДНК-геликазы DnaB E. coli.

I –  маленький N-концевой домен 12 кД, II – гибкий линкер, III+IV – большой С-концевой домен 33 кД, III – домен АТФазной активности, IV – домен взаимодействия с ДНК.

Н1, Н1а, Н2, Н3 и Н4 – консервативные домены геликаз семейства F-4. Указаны главные области взаимодействия с белком DnaА и праймазой DnaG

Только N-концевой домен DnaB изучен с высоким разрешением методами рентгеноструктурного анализа и ЯМР. 3-мерная структура всего белка пока установлена лишь методом криоэлектронной микроскопии с разрешением ~20 A. Эти данные показали, что в гексамере белка DnaB субъединицы образуют кольцо диаметром 12,5-14 нм и высотой 5,7 нм. Кольцо имеет центральное отверстие диаметром 3-4 нм, через которое может проийти нить онДНК. Аналогичные размеры имеют и кольца многих других гексамерных ДНК-геликаз. Существуют две взаимопревращающиеся формы кольца DnaB: “треугольник” с 3-кратной симметрией С3 и “пропеллер” с 6-кратной симметрией С6 (рис. 2.3). Взаимопревращение этих форм зависят от белок-белковых взаимодействий и, в частности, от способности N-концевых доменов I смежных субъединиц образовывать димеры. Домены I всех субъединиц расположены на одной и же поверхности основания кольца, а в самом кольце каждая из субъединиц взаимодействует только с 2 ближайшими соседями (рис. 2.4, А).

Структура комплексов белка DnaB с онДНК и вилочными субстратами ДНК изучена методом резонантного флуоресцентного переноса энергии. Эти данные показали, что онДНК действительно проходит через центральный канал гексамера DnaB, а не наматывается на её поверхности. Они позволили предложить модель связывания DnaB с ДНК в репликативной вилке  (рис. 2.4, В). “Передняя” часть белка DnaB, обращенная в сторону расплетаемого дуплекса ДНК, образована большими С-концевыми областями всех 6 субъединиц, с которыми взаимодействует участок днДНК длиной не более 2-3 п.н. Две расплетенные нити ДНК на “переднем” краю разделяются друг от друга: 5’-нить попадает в центральный канал кольца DnaB, а 3’-нить “исключается” за пределы гексамера. Во внутреннем канале кольца DnaB

Рис. 2.3. Электронномикроскопические изображения двух гексамерных форм ДНК-геликазы DnaB E. coli: с 3-кратной (слева) и 6-кратной (справа) симметрией

Рис. 2.4. Модели гексамера геликазы DnaB E. coli.

А. Домены белка DnaB: 1- глобулярный N-концевой домен I, 2 – линкерный участок II, 3 – удлиненная С-концевая область доменов III и IV.

В. Предполагаемая структура комплекса белка DnaB с вилочным стыком в ДНК. Показано, как 3’-нить онДНК исключается из центрального канала гексамера, а 5’-нить связывается с одной из субъединиц в центральном канале.Стрелкой указано направление движения белка DnaB по ДНК

участок расположен участок 5’-нити длиной ~20 н., который, возможно, частично взаимодействует с канавкой в субъединице DnaB, находящейся в данный момент времени в активном состоянии со связанным АТФ (см. стр. 00). 5’-конец 5’-нити ДНК выходит из отверстия кольца через “заднюю” часть, образованную малыми N-концевыми доменами субъединиц DnaB, взаимодействующими с праймазой. Такая организация комплекса благоприятна для прямой передачи расплетенной 5’-нити в качестве матрицы для синтеза РНК-праймеров фрагментов Оказаки.

3. ДНК-геликаза репликативной вилки у эукариотов

Общее число различных ДНК-геликаз даже у низших эукариотов гораздо больше чем у бактерий. Так, в геноме дрожжей S. cerevisiae около 200 открытых рамок считывания кодируют предполагаемые геликазы, которые могут выполнять самые разнообразные функции. Поэтому идентификация в таком большом наборе истинной «репликативной» ДНК-геликазы является очень трудной задачей. Можно ожидать a priori, что такая ДНК-геликаза должна быть функциональным аналогом белка DnaB E. coli, который не только принимает участие в инициации репликации хромосомы в области oriC (см. гл. 3), но и перманентно связан с реплисомой в хромосомных репликативных вилках (гл. 4).

В настоящее время считается, что такой эукариотической репликативной ДНК-геликазой является комплекс белков, названный МСМ (от minichromosome maintanance – сохранение минихромосом). Гены, кодирующие белки МСМ, были впервые идентифицированыв в дрожжей с использованием мутаций, нарушающих репликацию искусственных минихромосом и блокирующих движение по клеточному циклу. У S. cerevisiae обнаружены 6 таких генов (МСМ2-МСМ7), продукты которых абсолютно необходимы для  инициации репликации. Сборка комплекса всех 6 белков на областях начала репликации является обязательным этапом инициации репликации (гл. 3). С другой стороны, анализ температурочувствительных мутантов по генам МСМ показал, что все 6 белков МСМ2-7 необходимы и в течение всей фазы S для элонгации репликации хромосом.

Дрожжевые белки MCM2-MCM7 высокогомологичны друг другу в центральной области длиной ~200 аминокислотных остатков (рис. 2.5). Она содержит элемент, похожий на мотив Уокера типа А (GXXGXGKS/T), в котором второй и третий остатки глицина заменены на сер или ала. Эта область отвечает за связывание НТФ. Белки МСМ2-7 можно отнести к суперсмейству АТФаз ААА+ (см. 1.4). У белков МСМ2, МСМ4, МСМ6 и МСМ7 имеется область, похожая на цинковый палец, с нетипичной структурой СХ2СХ18-19СХ2-4С, которая, вероятно, участвует в белок-белковых взаимодействиях. Гомологи белков МСМ2-МСМ7 имеются у всех эукариотов. Для одноименных белков МСМ из разных организмов гомология не ограничивается центральным сегментом и заметна за его пределами.

            Рис. 2.5. Сохранение структуры белков MСМ S. cerevisiae.

            Черные сегменты – участки гомологии белков MСМ дрожжей с единственным белком MСМ архея Methanococcus thermoautotrophicum, цветные сегменты – участки гомологии субъединиц MСМ дрожжей с соответствующими белками млекопитающих.

Отмечено положение высоконсервативного домена связывания НТФ

У археев также имеются гомологи белков МСМ, необходимые для репликации. Некоторые археи (например, Methanococcus thermoautotrophicum), имеют единственный ген МСМ, что значительно облегчило изучение функции его продукта. Кодируемый этим геном белок образует двойные кольцевые гексамерные комплексы, обладающие ДНК-зависимой АТФазной и ДНК-геликазной активностью с полярностью 3’®5’. ДНК-геликаза МСМ этого архея высокопроцессивна и может расплетать in vitro дуплексы ДНК длиной до 500 п.н. Гомология архейной геликазы с белками МСМ2-7 эукариотов позволила предположить, что и комплекс МСМ обладает геликазной активностью.

Комплексы МСМ эукариотов действительно являются гексамерными и абсолютно необходимы для репликации ДНК на стадиях инициации и элонгации. Однако после выделения из эукариотических клеток такие комплексы имеют преимущественно не кольцевую, а глобулярную структуру, полностью лишены каталитических активностей и даже не связывают НТФ. С другой стороны, в процессе очистки образуются и тримерные субкомплексы Mcm4-Mcm6-Mcm7, которые спонтанно образуют кольцевые гексамерные структуры – предположительно, димеры тримеров 4-6-7. Такие структуры проявляют in vitro зависящее от АТФ связывание с онДНК, стимулируемую онДНК АТФазную активность и достоверную, но слабую ДНК-геликазную активность с полярностью 3’®5’, способную расплетать до 30 п.н. в дуплексах ДНК. Добавление к ним белка Mcm2 или димера Mcm3-Mcm5 вызывает разборку двойных тримеров и устраняет их геликазую активность. Это позволило предположить, что субъединицы Mcm4, Mcm6 и Mcm7 образуют каталитически активную сердцевину геликазы МСМ, а субъединицы Mcm2, Mcm3 и Mcm5 являются регуляторными субъединицами, негативно влияющими на геликазную активность. Таким образом, в отличие от других известных гексамерных ДНК-геликаз геликаза МСМ является гетероолигомерным белком, состоящим по меньшей мере из 3 разных субъединиц. Потребность в 6 белках МСМ даже на стадии элонгации позволяет предположить, что даже регуляторные субъединицы входят в гексамер не только во время инициации, но и во время движения репликативных вилок, но их ингибиторный эффнект сменяется активаторным. Активация всего комплекса, вероятно, зависит от посттрансляционной модификации регуляторных субъединиц на стадии инициации репликации, которую мы расссмотрим в гл. 3.



           

                Рис. 2.6. Гипотетическая модель образования активных кольцевых гексамерных комплексов геликазы МСМ из разных субъединиц in vivo и in vitro

В качестве рабочей гипотезы для объяснения особенностей поведения комплекса МСМ предложена модель, преставленная на рис. 2.6. Согласно этой модели, природная геликаза МСМ собирается из двух неидентичных тримеров, один из которых состоит из каталитических субъединиц Mcm4, Mcm6 и Mcm7, а второй - из регуляторных субъединиц Mcm2, Mcm3 и Мcm6. После первичной сборки гетерогексамер МСМ организован в каталитически не активную глобулярную структуру. Посттрансляционная модификация регуляторных субъединиц на стадии инициации in vivo реогранизует этот комплекс в активное гексамерное кольцо, в котором регуляторные субъединицы чередуются с каталитическими. Это правильное взаимное расположение неактивных и активных субъединиц помогает каталитическим субъединицам образовать необходимую для геликазной активности кольцевую структуру с 3-кратной симметрией, изображенную на рис. 2.7 в виде треугольника. При выделении из клеток эта структура разрушается с освобождением регуляторных субъединиц и сборкой in vitro частично активных гексамеров из двух тримеров 4-6-7. В такой структуре одна триада Mcm4- Mcm6-Mcm7 участвует в каталитическом цикле ДНК-геликазы, а вторая заменяет, но недостаточно эффективно, структурную функцию отсутствующих модифицированных регуляторных субъединиц.

4. Механизм действия гексамерных ДНК-геликаз

Рассмотрим рабочие модели нескольких последовательных этапов в каталитическом цикле репликативных гексамерных ДНК-геликаз. Эти модели основаны на экспериментальных данных, но во многих деталях остаются гипотетическими.

Погрузка гексамерных ДНК-геликаз на ДНК

Для многих кольцевых ДНК-геликаз доказано, что нить онДНК, по которой транслоцируется связанная геликаза, проходит через канал в центре кольца, а не находится на поверхности белка. Поэтому, как и в случае погрузчиков зажима ДНК-полимераз (cм. 1.00), необходимо объяснить, как эта нить попадает внутрь кольца. Доказано, что эта проблема в обоих случаях решается одинаковым образом – по механизму размыкания кольца. Предполагается, что ДНК вначале связывается со первичным слабым сайтом на внешней поверхности кольца ДНК-геликазы (рис. 2.7). Затем кольцо временно размыкается на контактной поверхности между 2 смежными протомерами и нить онДНК попадает внутрь центрального канала, где связывается с более прочным контактным сайтом. После замыкания гексамерного кольца ДНК-геликаза становится способной транлоцировать по онДНК, не отрываясь от неё. Размыкание кольца может происходить спонтанно, но чаще всего облегчается вспомогательными белками – погрузчиками ДНК-геликаз. Так, у фага Т4  погрузке ДНК-геликазы на онДНК, покрытую связывающимся с ней белком gp32, помогает вспомогательный белок gp59. У ДНК-геликазы DnaB E. coli аналогичную роль погрузчика играет белок DnaC.

Рис. 2.7. Последовательные стадии связывания и попадания нити онДНК в центральный канал гексамерной ДНК-геликазы

В опытах in vitro геликаза DnaB связывается с вилочными субстратами ДНК, имеющими однонитевой 5’-хвост. Вероятно, в этом случае погрузка DnaB на ДНК осуществляется по другому механизму: 5’-онДНК проходит через отверстие кольца DnaB, как нитка продевается в игольное ушко. Однако при инициации репликации in vivo кольцо DnaB должно связаться с внутренним однонитевым участком ДНК, не имеющим свободных концов. Для этого геликаза DnaB нуждается в помощи своего природного партнера –белка DnaС. Этот белок имеет длину 245 остатков (мол. м. 28 кД) и содержит область связывания с DnaB на N-конце и область, содержащую типичные АТФазые мотивы Уокера в С-концевой половине (рис. 2.8). Белок DnaС относится к семейству АТФаз ААА+, подобно погрузчикам скользящего зажима ДНК-полимераз, и может связывать и гидролизовать АТФ.

            1 10                70                                                                                     245

       N              I                                                            II                                      C                                               

Рис. 2.8. Схема организации белка DnaC E. coli.

I – область взаимодействия с белком DnaB,

II – мотивы связывания АТФ

 

Количество белка DnaС на клетку E. coli равно ~20, т.е. совпадает с числом молекул DnaB. Гексамер геликазы DnaB стехиометрически связывает 6 мономеров DnaС в форме со связанным АТФ. Молекулы DnaС располагаются на поверхности одного из оснований кольца DnaB и, вероятно, ассоциируются с С-концевой половиной DnaB. Такое взаимодействие, стабилизируемое АТФ, “замораживает” гексамер DnaB в треугольной конформации с симметрией С3 и закрывает центральный канал DnaB на стороне, противоположной сайтам связывания DnaС. В результате через этот канал не может пройти даже онДНК.

 Образование комплекса DnaB-DnaС изменяет свойства обоих партнеров. Белок DnaB утрачивает все свои каталитические активности, включая НТФазную и геликазную, а у белка DnaС активируется его “скрытая” (cryptic) способность связываться с онДНК. В результате комплекс DnaB-DnaС может ассоциироваться с голой онДНК, но не с ДНК, покрытой белком SSB. Этот механизм предотвращает неразборчивую погрузку геликазы DnaB на участки хромосомы, временно ставшие однонитевыми (например, в результате эксцизионной репарации ДНК) и покрытые SSB. Во время инициации репликации хромосомы E. coli  в области oriC участки голой онДНК создаются белком-инициатором DnaА (гл.3), за счет взаимодействия с которым белка DnaB на них вербуется комплекс DnaB6-(DnaС-АТФ). После связывания с этими участками белок DnaС каким-то образом размыкает кольцо DnaB и пропускает внутрь него нить онДНК. Вероятно, это происходит так же, как при погрузке зажима ДНК-полимераз g-комплексом погрузчика (см. 1.00). Контакт белка DnaС с онДНК и DnaB запускает гидролиз АТФ, связанного с DnaС, после чего субъединицы DnaС-АДФ покидают комплекс с гексамером DnaB, и он приобретает ДНК-геликазную активность.

 

Cопряжение гидролиза НТФ с транслокацией по онДНК

Гидролиз НТФ ДНК-геликазами используется ими как источник энергии для перемещения по онДНК и для расплетания днДНК. Анализ равновесного связывания нуклеотидов показал, что у многих гексамерных геликаз из 6 субъединиц только три обладают высоким сродством к нуклеотидам, а остальные три имеют низкое сродство и не участвуют в связывании НТФ и в катализе гидролиза. С другой стороны, изучение предстационарной кинетики гидролиза НТФ позволило предположить, что в любой момент времени только одна связанная с гексамером молекула НТФ гидролизуется с высокой скоростью, т.е. три потенциальных каталитических центра в гексамерной геликазе участвуют в гидролизе НТФ не одновременно, а последовательно друг за другом. В этом отношении гексамерные геликазы напоминают другой, хорошо изученный ранее гексамерный фермент – F1-АТФазу мембранных протонных насосов. Последняя состоит из 3 неактивных структурных a-субъединиц и 3 каталитически активных b-субъединиц, которые работают не одновременно. В последовательном механизме действия этой АТФазы реакцию гидролиза АТФ можно разбить на 3 парциальные стадии: связывания АТФ, гидролиза АТФ и освобождения продуктов (АДФ и неорганического фосфата). В любой данный момент времени каждая из этих стадий осуществляется только какой-то одной из a-субъединиц: одна связывает АТФ, вторая гидролизует его, а третья освобождает продукты. В дальнейшем эти субъединицы, согласованно претерпевая последовательные изменения конформации, меняются друг с другом ролями.

Рассмотрим последовательную 3-сайтовую модель действия гексамерных ДНК-геликаз, основанную на аналогии с F1-АТФазой и модифицированную с учетом взаимодействия геликаз с ДНК. Предполагается, что в любой момент времени 3 активные субъединицы геликазы находятся в 3 разных конформационных состояниях. В состоянии Т субъединица связывает НТФ и одновременно имеет высокое сродство к онДНК. В состоянии D она связывает НДФ (продукт гидролиза НТФ) и проявляет более низкое сродство к ДНК, а в «пустом» состоянии Е субъединица свободна от нуклеотидов и онДНК. В первый момент в Т-состоянии находится субъединица 1, в D-состоянии субъединица 2 и в Е-состоянии субъединица 3 (рис. 2.9). Гидролиз НТФ субъединицей 1 вызывает её переход в D-состояние и вызывает одновременное изменение конформации двух остальных субединиц: субъединица 2 освобождает продукты гидролиза и становится «пустой» (переход в Е-состояние), а субъединица 3 связывает НТФ и оказывается в Т-состоянии. Реакция на каждой из субъединиц зависит от реакций, проходящих на 2 остальных субъединицах. Это обеспечивает последовательное протекание 3 стадий катализа (связывания НТФ, гидролиза НТФ и освобождения продуктов) на 3 активных сайтах геликазы. Такие циклы повторяются периодически, и после 3 циклов каждая субъединица геликазы возвращается в исходное состояние.

Рис. 2.9. Схема последовательных изменений состояния индивидуальных субъединиц (1, 2 и 3) в гексамерной ДНК-геликазе.

Т – сайт со связанным НТФ, D – сайт со связанным НДФ, Е – «пустой» сайт

Т.к. изменения конформационного состояния субъединиц приводят к изменению их сродства к онДНК, каждая из субъединиц должна последовательно прочно связываться с ДНК в состоянии Т, ослаблять свою ассоциацию с ДНК после гидролиза НТФ и перехода в состояние D , освобожаться от контакта ДНК при передоде в состояние Е и вновь связываться с ДНК, но уже в новом месте, после повторного связывания НТФ и возврата с состояние Т (рис. 2.10, А).

Такая последовательность событий в каждом из 3 сайтов геликазы может обеспечить перемещение ДНК-гелиеказы вдоль ДНК (рис. 2.10, В). В начальный момент времени субъединица 1, находящаяся в состоянии Т и прочно связанная с онДНК, претерпевает изменение конформации, инициирующее движение геликазы. Соседняя субъединица 2, слабо связанная с ДНК в состоянии D, освобождается из контатка с ДНК, а «пустая» субъединица 3 связывает НТФ и прочно связывается с ДНК, но уже в другом сайте. Хотя ДНК освобождается от геликазы в одном месте, в любой момент она остается связанной с двумя субъединицами геликазы. Повторение таких циклов изменения контактов субъединиц ДНК-геликазы с участками ДНК должно привести к однонаправленному процессивному перемещению ДНК-геликазы вдоль онДНК (механизм «активного вращения» - active rolling)

Рис. 2.10. Гипотетическая 3-сайтовая модель транслокации гексамерной ДНК-геликазы по онДНК, сопряженной с НТФазной активностью.

А. Последовательные изменения конформации индивидуальной субъединицы геликазы (I – гидролиз НТФ и ослабление связывания с ДНК, II – диссоциация НДФ и отрыв от ДНК, III – связывание НТФ и прочная ассоциация с новым сайтом в ДНК.

В. Последовательные стадии транслокации геликазы (1, 2 и 3 – номера индивидуальных субъединиц).

Обозначения различных состояний субъединиц – как на рис. 2.9

Расплетание днДНК

Этот аспект работы ДНК-геликаз наиболее труден для изучения, и все предложенные механизмы расплетания днДНК остаются гипотетическими. Их можно классифицировать как активные и пассивные, в зависимости от того, участвует ли геликаза в самом акте расплетания или просто стабилизирует участки онДНК. В пассивном механизме ДНК-геликаза косвенно облегчает расплетание, связываясь с онДНК, которая становится доступной в результате временного плавления двойной спирали, вызванного тепловыми флуктуациями на стыке между онДНК и ДНК. В этой модели ДНК-геликаза высупает как разновидность связывающих онДНК и дестабилизирующих дуплекс белков. В пассивном механизме ДНК-геликаза должна связываться с онДНК и однонаправленно перемещаться вдоль неё в направлении днДНК. Транслоцирующаяся ДНК-геликаза улавливает сегменты онДНК длиной в один или несколько нуклеотидов, спонтанно появляющиеся на стыке онДНК-днДНК. Пассивная модель не нашла экспериментального подтверждения. Ей противоречит и способность некоторых ДНК-геликаз связываться не только с онДНК, но и с днДНК.

Активные механизмы расплетания днДНК можно подразделить на три класса. Первые две модели не требуют прочного связывания ДНК-геликазы с днДНК. Модель клина (рис. 2.10, А) предполагает, что одна из расплетенных нитей дуплекса ДНК прочно связана в центральной отверстии кольца гексамерной ДНК-геликазы, а вторая расположена вне кольца и не взаимодействует с белком. При однонаправленном движении геликазы по нити ДНК, проходящей через центральный канал, энергия гидролиза НТФ порождают движущую силу, достаточную не только для перемещения по онДНК, но и для дестабилизации нескольких пар нуклеотидов в днДНК, примыкающей к онДНК. Движущаяся ДНК-геликаза, подобно клину, механически раздвигает эти спаренные основания. Во второй, торсионной модели (рис. 2.10, В) обе разделенные нити ДНК прочно связываются с ДНК-геликазой: одна в центральном канале, а вторая на внешней поверхности кольца. Эти сильные взаимодействия вызывают при транслокации ДНК-геликазы вращение двух нитей ДНК друг относительно друга и генерируют крутящий момент, который раскручивает две нити дуплекса на участке, примыкающем к уже расплетенным нитям. Третья модель активного действия ДНК-геликаз (модель дестабилизации дуплекса) предполагает, что геликаза взаимодействует в центральном канале или на поверхности гексамера не только с онДНК, но и со смежным сегментом дуплекса. Изменения конформации белка, обусловленные гидролизом НТФ, по неустановленному механизму дестабилизируют спираль днДНК в активном центре ДНК-геликазы и вызывают в этой области контакта с днДНК плавление нескольких п.н. После частичного расплетания дуплекса транслоцирующаяся ДНК-геликаза улавливает разошедшиеся нити ДНК. Эта модель похожа на пассивный механизм, но предполагает, что первичное разделение нитей днДНК вызвано не тепловыми флуктуациями, а изменениями конформации ДНК-геликазы.

 

Рис. 2.11. Гипотетические модели активного расплетания днДНК гексамерными геликазами.

                        А. Модель клина.

                        В. Торсионная модель.

                        С. Модель деспирализации двойной спирали ДНК.