Трансмембранныый перенос ионов и низкомоекулярных соединений
создание документов онлайн
Документы и бланки онлайн

Обследовать

Администрация
Механический Электроника
биологии ботаника
география
дом в саду
история
литература
маркетинг
математике
медицина
музыка
образование
психология
разное
художественная культура
экономика


Трансмембранныый перенос ионов и низкомоекулярных соединений

биологии


Отправить его в другом документе Tab для Yahoo книги - конечно, эссе, очерк Hits: 2461


дтхзйе дплхнеофщ

Закон химического состава живого вещества, или первый закон Энгельса
ЗООЛОГИЯ ПОЗВОНОЧНЫХ
Центросомный цикл
СТАЙНЫЙ ОБРАЗ ЖИЗНИ
МЕТОДЫ ОПРЕДЕЛЕНИЯ ПЕРВИЧНОЙ СТРУКТУРЫ БЕЛКА
ХАРАКТЕРИСТИКА ОСНОВНЫХ ЭНДОКРИННЫХ СТРУКТУР
Функциональные свойства гистонов
Нуклеотиды. Номенклатура нуклеотидов
Ядро эукариотических клеток
Основные компоненты белок синтезирующей системы. Аминоацил т-РНК – синтетазы. Активация аминокислот
 

Трансмембранныый перенос ионов и низкомоекулярных соединений

Плазматическая мембрана, так же как и другие липопротеидные мембраны клетки, является полупроницаемой. Это значит, что через нее с различной скоростью проходят разные молекулы и чем больше размер молекул, тем меньше скорость прохождения их через мембрану. Это свойство определяет плазматическую мембрану как осмотический барьер. Максимальной проникающей способностью обладает вода и растворенные в ней газы, значительно медленнее проникают сквозь мембрану ионы (примерно в 104 раз медленнее). Поэтому если клетку, например эритроцит, поместить в среду, где концентрация солей будет ниже, чем в клетке (гипотония), то вода снаружи устремит 131i89gb ся внутрь клетки, что приведет к увеличению объема клетки и к разрыву плазматической мембраны (“гипотонический шок”). Наоборот, при помещении эритроцита в растворы солей более высокой концентрации, чем в клетке, произойдет выход воды из клетки во внешнюю среду. Клетка при этом сморщится, уменьшится в объеме.

Такой пассивный транспорт воды из клетки и в клетку все же идет с низкой скоростью. Скорость проникновения воды через мембрану составляет около 10-4 см/с, что в 100 000раз меньше скорости диффузии молекул воды через водный слой толщиной 7,5 нм. Было заключено, что в клеточной мембране, в ее липопротеидном слое существуют специальные “поры” для проникновения воды и ионов. Число их не так велико: суммарная площадь при величине отдельной “поры” около 0,3-0,8 нм должна составлять лишь 0,06% всей клеточной поверхности.

В отличие от искусственных бислойных липидных мембран, естественные мембраны, и в первую очередь плазматическая мембрана, все же способны транспортировать ионы и многие мономеры, такие как сахара, аминокислоты и др. Проницаемость для ионов мала, причем скорость прохождения разных ионов неодинакова. Более высокая скорость прохождения для катионов (K+, Na+) и значительно ниже для анионов (Cl-).



Транспорт ионов через плазмалемму проходит за счет участия в этом процессе мембранных транспортных белков - пермеаз. Эти белки могут вести транспорт в одном направлении одного вещества (унипорт) или нескольких веществ одновременно (симпорт), или же вместе с импортом одного вещества выводить из клетки другое (антипорт). Так, например, глюкоза может входить в клетки симпортно вместе с ионом Na+.

Транспорт ионов может происходить по градиенту концентрации - пассивно без дополнительной затраты энергии. Так, например, в клетку проникает ион Na+ из внешней среды, где его концентрация выше, чем в цитоплазме. В случае пассивного транспорта некоторые мембранные транспортные белки образуют молекулярные комплексы, каналы, через которые растворенные молекулы проходят через мембрану за счет простой диффузии по градиенту концентрации. Часть этих каналов открыта постоянно, а другая часть может закрываться или открываться в ответ либо на связывание с сигнальными молекулами, либо на изменение внутриклеточной концентрации ионов. В других случаях специальные мембранные белки - переносчики избирательно связываются с тем или иным ионом и переносят его через мембрану (облегченная диффузия) (рис. 131).

Наличие таких белковых транспортных каналов и переносчиков казалось бы должно приводить к уравновешиванию концентраций ионов и низкомолекулярных веществ по обе стороны мембраны. На самом же деле это не так: концентрация ионов в цитоплазме клеток резко отличается не только от таковой во внешней среде, но даже от плазмы крови, омывающей клетки в организме животных. На табл. 14 показаны концентрации ионов внутри и снаружи клетки.

Таблица 14.

Ион

Внутриклеточная концентрация, мМ

Внеклеточная концентрация, мМ

Na+

5-15

145

K+

140

5

Mg2+

30

1-2

*Ca2+

1-2

2,5-5

Cl-

4

110

*Концентрация Ca2+ в свободном состоянии в цитозоле эукариотических клеток составляет 10-7 М, а снаружи 10-3 М.

Как видно, в этом случае, суммарная концентрация одновалентных катионов как внутри клеток, так и снаружи практически одинаковы (150 мМ), изотонична. Но оказывается в цитоплазме концентрация K+ почти в 50 раз выше, а Na+ ниже, чем в плазме крови. Причем это различие поддерживается только в живой клетке: если клетку убить или подавить в ней метаболические процессы, то через некоторое время ионные различия по обе стороны плазматической мембраны исчезнут. Можно просто охладить клетки до +20С, и через некоторое время концентрация K+ и Na+ по обе стороны от мембраны станут одинаковыми. При нагревании клеток это различие восстанавливается. Это явление связано с тем, что в клетках существуют мембранные белковые переносчики, которые работают против градиента концентрации, затрачивая при этом энергию за счет гидролиза АТФ. Такой тип работы носит название активного транспорта, и он осуществляется с помощью белковых ионных насосов. В плазматической мембране находится двухсубъединичная молекула (K+ + Na+)-насоса, которая одновременно является и АТФазой. Этот насос при работе откачивает за один цикл 3 иона Na+ и закачивает в клетку 2 иона K+ против градиента концентрации. При этом затрачивается одна молекула АТФ, идущая на фосфорилирование АТФазы, в результате чего Na+ переносится через мембрану из клетки, а K+ получает возможность связаться с белковой молекулой и затем переносится в клетку (рис. 132). В результате активного транспорта с помощью мембранных насосов происходит также регуляция в клетке концентрации и двухвалентных катионов Mg2+ и Ca2+, также с затратой АТФ.

Такая постоянная работа пермеаз и насосов создает в клетке постоянную концентрацию ионов и низкомолекулярных веществ, создает т.н. гомеостаз, постоянство концентраций осмотически активных веществ. Надо отметить, что примерно 80% всей АТФ клетки тратится на поддержание гомеостаза.

В сочетании с активным транспортом ионов через плазматическую мембрану происходит транспорт различных сахаров, нуклеотидов и аминокислот.

Так активный транспорт глюкозы, которая симпортно (одновременно) проникает в клетку вместе с потоком пассивно транспортируемого иона Na+, будет зависеть от активности (K+ + Na+)-насоса. Если этот (K+-Na+)-насос заблокировать, то скоро разность концентрации Na+ по обе стороны мембраны исчезнет, сократится при этом диффузия Na+ внутрь клетки, и одновременно прекратится поступление глюкозы в клетку. Как только восстановится работа (K+-Na+)-АТФазы и создается разность концентрации ионов, то сразу возрастает диффузный поток Na+  и одновременно транспорт глюкозы. Подобно этому осуществляется через мембрану и поток аминокислот, которые переносятся специальными белками-переносчиками, работающими как системы симпорта, перенося одновременно ионы.

Активный транспорт сахаров и аминокислот в бактериальных клетках обусловлен градиентом ионов водорода.

Само по себе участие специальных мембранных белков, участвующих в пассивном или активном транспорте низкомолекулярных соединений, указывает на высокую специфичность этого процесса. Даже в случае пассивного ионного транспорта белки “узнают” данный ион, взаимодействуют с ним, связываются специфически, меняют при этом свою конформацию и функционируют. Следовательно, уже на примере транспорта простых веществ мембраны выступают как анализаторы, как рецепторы. Особенно такая рецепторная роль проявляется при поглощении клеткой биополимеров.