ФУНКЦИОНАЛЬНЫЕ ОСОБЕННОСТИ ПИЩЕВАРИТЕЛЬНОЙ СИСТЕМЫ
создание документов онлайн
Документы и бланки онлайн

Обследовать

Администрация
Механический Электроника
биологии ботаника
география
дом в саду
история
литература
маркетинг
математике
медицина
музыка
образование
психология
разное
художественная культура
экономика





















































ФУНКЦИОНАЛЬНЫЕ ОСОБЕННОСТИ ПИЩЕВАРИТЕЛЬНОЙ СИСТЕМЫ

биологии



Отправить его в другом документе Tab для Yahoo книги - конечно, эссе, очерк Hits: 946



дтхзйе дплхнеофщ

Закон единства и многообразия жизни, или закон Сент-Илера
Закон информационной обусловленности биологических явлений, или закон Уоддингтона
РОЗМНОЖЕННЯ МІКРООРГАНІЗМІВ. КУЛЬТУРАЛЬНІ ВЛАСТИВОСТІ БАКТЕРІЙ. ФЕРМЕНТИ МІКРООРГАНІЗМІВ, МЕТОДИ ЇХ ВИЯВЛЕННЯ. АНТИБІОТИКИ.
КРУГ КРОВООБРАЩЕНИЯ
Базальные тельца. Строение и движение ресничек и жгутиков.
НЕРВНАЯ СИСТЕМА ЛАНЦЕТНИКА
ДЕРМА
Компоненты ядерной оболочки
ХАРАКТЕРИСТИКА ОСНОВНЫХ ЭНДОКРИННЫХ СТРУКТУР
 

ФУНКЦИОНАЛЬНЫЕ ОСОБЕННОСТИ ПИЩЕВАРИТЕЛЬНОЙ СИСТЕМЫ
Состав секретируемых желудочно-кишечным трактом соков сложен и ввиду ряда технических и методических причин до конца не изучен у рыб, как и механизм самой секреции. Секреторная интенсивность отмечена и в головной, и в 212h78ic туловищной кишке рыб. Однако интенсивность секреции и химическая реактивность секретируемых продуктов в разных участках пищеварительной системы, конечно, неодинаковы.
Немногие виды рыб имеют механизм секреции в ротовой полости, глотке и пищеводе. У большинства рыб в ротовой полости обнаруживается секрет, представленный только слизью. Главное назначение такого секрета - защита эпителия и вкусовых рецепторов.
Чем грубее пища, составляющая обычный рацион рыбы, тем более развит секреторный аппарат. Так, у рыб, питающихся кораллами (скаровые рыбы), отмечается интенсивная секреция слизи в ротовой полости. Обильная слизь способствует проглатыванию кораллов.
Обильное слизевыделение характерно и для цихлид, однако слизь у них играет несколько иную роль. Она необходима для выкармливания молоди. Лабиринтовые рыбы используют такую же ротовую слизь для построения гнезда. Показатель рН ротовой слизи рыб близок к нейтральной величине.
Слизистая оболочка пищевода имеет множественные борозды и складки, в которых накапливается слизь, задача которой заключается в обеспечении движения пищевого кома из ротовой полости после проглатывания.
У некоторых видов рыб (кефаль) слизистая пищевода имеет секреторные клетки, аналогичные желудочным секреторных клеткам.
Секреторная активность желудка. Секреторная функция желудка у рыб существенно отличается от таковой у наземных теплокровных животных.
Хотя эта функция желудка и находится под нейрогуморальным контролем, как и у других животных, у рыб имеется своя специфика, вызванная их таксономическим положением и образом жизни. Растяжение стенки желудка приводит к возбуждению пищеварительных центров в центральной нервной системе, По блуждающему нерву к секреторному аппарату желудка поступает стимул.
В регуляции секреции не меньшую роль играет и местная эндокринная система желудка, которая посредством биологически активных веществ - гастрина, гистамина, ацетилхолина - стимулирует секрецию желудочного сока.
Ацетилхолин является первым исполнителем воли центра. Он обладает разносторонним действием. Прежде всего он выступает в роли медиатора в синапсах. Ацетилхолин способен непосредственно возбуждать секреторные клетки желудка. Он стимулирует выделение гастрина, вызывает усиление синтеза гистамина.
Тастрин в 1,5 раза активнее гистамина стимулирует выделение соляной кислоты. Оба слабо влияют на отделение пепсиногена. Гастрин действует на клетки слизистой желудка через кровь, т. е. с определенной временной задержкой.
Тистамин обладает паракриновым эффектом в отношении секретирующих клеток желудка, т.е. действует непосредственно и, следовательно, быстро.
Основными компонентами желудочного сока рыб являются слизь, ферменты и соляная кислота. Физиологическая роль соляной кислоты исключительна и сводится к следующему.
Соляная кислота активирует зимогены и превращает, например, пепсиноген в пепсин - активную форму.
Соляная кислота создает оптимальное значение рН в желудке, что важно для максимально эффективной работы ферментов. По данным разных исследователей, рН желудочного сока колеблется от 1,2 до 5,0. Пепсин максимально активен при рН 1,0-2,0.
Соляная кислота способствует набуханию пищи, растворяет кости, кальцинированные кожные образования - чешую, жучки, а также наружный скелет и панцирь моллюсков, кораллов и т. д., а также участвует в регуляции процесса эвакуации желудочного содержимого в кишечник.
Однако анализ пищеварения хищников из семейства карповых (голавль, жерех), у которых нет желудка и не вырабатывается соляная кислота, позволяет говорить о том, что она не является обязательным компонентом пищеварительных соков даже у хищных рыб.
У некоторых рыб, например у акул, концентрация соляной кислоты в желудочном соке достигает 3 %. Поэтому тушка жертвы вынутая из желудка акулы через несколько минут после проглатывания, уже лишена чешуи, жучек и других кальцинированных образований.
Количество секретируемого пепсина у рыб зависит от температуры воды. Как резкое повышение, так и понижение температуры воды уменьшают секрецию фермента.
Количество соляной кислоты и слизи в большей мере определяется количеством поступившей в желудок пищи. Механическое растяжение желудка сопровождается усилением секреции соляной кислоты.
Помимо протеолитических ферментов в желудке рыб обнаружена липаза. В желудке некоторых видов, например угря, радужной форели, судака, ставриды, обнаруживают фермент хитиназу. Однако нет доказательств ее эндогенного происхождения. Хитиназная активность желудка - скорее результат автолиза. Как известно, автолиз широко распространен в природе.
Еще одна особенность желудочного пищеварения рыб - высокая лизосомная активность, что для рыб, питающихся зоопланктоном с высоким содержанием различных полисахаридов в качестве строительного материала покровных тканей, очень важно.
Секреторная функция кишечника. Секреторная функция кишечника рыб изучена недостаточно. Пищеварительные соки, обнаруживаемые в кишке, есть смесь секретов самой кишки, поджелудочной железы и печени. Дополнительную сложность при изучении кишечной секреции создают пилорические придатки, у которых имеется собственный секреторный аппарат.
Известно, что секрецию кишечника реализуют энтероциты и слизистые клетки кишечного эпителия, причем первые вырабатывают энзимогены, вторые - слизь. Считается, что энтероциты рыб продуцируют ферменты всех трех групп: протеолитические, липолитические, гликолитические.
Основным протеолитическим ферментом кишечного сока является трипсин. Поскольку, как и лю-бой другой фермент, он вырабатывается в форме профермента, то у него должен быть активатор. Таковым в кишечном соке является другая протеаза - энтерокиназа. В свою очередь, активный трипсин выполняет роль активатора по отношению к другим зимогенам кишечного сока и поджелудочной железы, например хемотрипсиногену,
В опытах in vitro слизистая кишечника проявляет и липолитическую активность, что позволяет говорить о секреции энтероцитами липаз. Липазы обнаружены и в пилорических придатках.
Гликолитические ферменты кишечного сока представлены рядом ферментов, проявляющих активность по отношению к разным углеводам. Причем этот спектр богаче у растительноядных рыб. Так, кишечник карпа секретирует амилазу, глюкозидазу, мальтазу, сахаразу, лактазу. Некоторые авторы относят сюда и целлобиазу, что вызывает сомнение.
Амилаза обнаружена в кишечном соке хищных, например форели, что объясняет успешное выращивание этого вида на кормах, содержащих углеводы.
Хитиназа обычна в кишечном соке карповых. Однако действует она специфично, не до конца. В экскрементах карпа обнаруживают оболочки яиц артемий, эфиппиумы дафний, челюсти хирономид. Скорее всего, хитиназа (???) обеспечивает расчленение наружного скелета насекомых и их личинок. Речь об использовании хитина как питательного вещества вести нельзя. А потому возникает вопрос: хитиназа ли это вообще?
Кроме отмеченных выше, вероятно, кишечник рыб секретирует щелочную фосфатазу и нуклеазы. Однако действие этих ферментов у рыб не изучено.
В регуляции кишечной секреции большую роль играют гормоны и электролиты. В опытах денервация кишечника не влияла на секрецию в кишечнике. Однако степень наполнения кишки влияет на секрецию посредством возбуждения Мейснеровского сплетения, расположенного в подслизистом слое. Следовательно, регуляция кишечной секреции имеет все ту же нейрогуморальную природу.
Конечная (прямая) кишка имеет слизистую, образованную эпителием, продуцирующим слизь.
У безжелудочных рыб кишечная секреция непрерывна, у желудочных - периодична, связана с эвакуацией химуса из желудка.
Характеристика ферментных систем. Гидролиз белков. У желудочных рыб гидролиз белков начинается с денатурации белковых молекул соляной кислотой с последующим расщеплением кислыми карбоксильными протеазами. В желудке основной протеазой является пепсин, который вырабатывается клетками слизистой в неактивной форме, т. е. в виде зимогена.
Под влиянием ионов водорода или протеаз в результате ограниченного протеолиза при рН 2,0-5,0 происходит превращение пепсиногена в пепсин. Активация зимогена связана с отщеплением от N-конца 44 аминокислотных остатков, что приводит к образованию пепсина, после "информационных изменений молекулы которого образуется активный центр. Существует несколько молекулярных форм пепсина (например, у трески - 3, у кошачьей акулы - 4). Молекулярная масса зимогена 40 000, активированного фермен-та 35000. Пепсин в желудке гидролизует около 10% всех пептидных связей. Для рыб характерна активность ферментов в широком спектре рН(1,0-7,0) и температур (0-30 њС).
В содержимом желудка обнаруживаются и другие ферменты, но механизм их секреции у рыб не описан. Достоверно известно, что у хищных (акул) большую роль играет фермент коллагеназа.
Более глубокому перевариванию белков способствуют ферменты поджелудочной железы и кишечного сока.
У безжелудочных рыб схема переваривания несколько иная: она не имеет стадий воздействия кислых протеаз. Из ротовой полости Пища поступает сразу в нейтральную или слабощелочную среду туловищ-ной кишки. Наиболее сильному воздействию химус подвергается со стороны панкреатических ферментов - трипсина, хемотрипсинов А, В и С, эластазы, а также карбоксипептидаз Аи В
Подобно желудочным пептидазам протеолитические ферменты поджелудочной железы выделяются а виде зимогенов, которые путем ограниченного протеолиза при помощи каскадного механизма превращаются в активные формы.
Зимоген трипсиноген активируется кишечной энтерокиназой и трипсином, остальные протеазы - только трипсином.
Молекулярная масса трипсина рыб от 21 400 (карп) до 26000 (амурский сом). Трипсин карпа активен при рН 4,7 и 9,2. Активность трипсина карпа в 3-7 раз выше таковой млекопитающих.
Трипсин расщепляет связи в основном между основными аминокислотами, хемотрипсин - связи ароматических аминокислот, эластаза -связи между алифатическими аминокислотами. Несмотря на то что аминокислотный состав энзимов довольно разнообразен (трипсиноген - 229 аминокислотных остатков, хемотрипсиноген - А - 245, эластаза - 240), ключевую роль в катализе играют 3 аминокислотных остатка, входящих в состав активного центра, - серина, гистидина и аспарагина.
Указанные ферменты, кроме того, обладают амилазной и эстеразной активностью.
Нативные белки плохо расщепляются трипсином и хемотрипсином. Они становятся доступными для гидролиза только после денатурации за счет изменения вторичной и третичной структур.
Зимоген прокарбопепсидаза А поджелудочной железы имеет 2 формы: с молекулярной массой 87 000 и 64 000.
Как желудочные, так и панкреатические пептидазы дробят молекулу белка до олигопептидов, состоящих из 2-6 аминокислотных остатков.
Пептидазы кишечного сока завершают процесс деполимеризации белковых молекул.
В кишечном соке содержится несколько пептидаз. Наиболее значимый фермент кишки - амино-пептидаза М (аланин-амино-пептидаза). Этот фермент отщепляет основные кислоты от олигопептидов.
Аминопептидазы А, имеющие молекулярную массу от 112000 до 350000, отщепляют остаток аспарагиновой и глутаминовой кислот.
Есть в кишечном соке и дипептидазы и энтерокиназы, имеющие свои особые функции.
Гидролиз углеводов. Оптимальным значением активной реакции среды для гидролитических про-цессов является рН от 6,5 до 7,5.
Субстратами для гликолитических ферментов кишечника и поджелудочной железы потенциально являются 3 группы веществ-
1. Структурные полисахариды (целлюлоза, лигнин, агар, хитин). Однако, согласно современным представлениям, эта группа углеводов не чувствительна к ферментам позвоночных. Если они деполимеризуются, то исключительно под влиянием энзимов, вырабатываемых микробами.
2. Универсальные полисахариды (крахмал, гликоген).
3. Олиго-, дисахариды и моносахара обладают способностью проходить через слизистую кишки без существенных изменений.
Гликолитические ферменты активны при рН, близком к 7, или в слабощелочной среде. Поэтому у желудочных рыб переваривание углеводов начинается только при поступлении корма в кишечник.
Тонкий механизм воздействия ферментов на углеводную цепочку у рыб не описан. Однако если признать, что общие принципы деполимеризации молекулы полисахаридов у высших и низших животных одни и те же, то следует предположить наличие в панкреатическом соке а- и у-амилазы.
Экспериментальные данные о происхождении ос-амилазы в кишечнике рыб противоречивы или видоспецифичны. Так, например, у щуки, судака отмечено наличие ос-амилазы в мембране кишки; у карпа, окуня, плотвы - в полости кишки. Как известно, а-амилаза является эндогидролазой, а у-амилаза - экзогидролазой. Причем а-амилаза разрывает полимер в средней части, действуя на 1,4-а-гликозидные связи с образованием больших обломков молекул. у-амилаза последовательно отщепляет остатки глюкозы от конечной части полимерного остатка после обработки а-амилазой.
У высших животных, имеющих в составе слюны или в рубце а-амилазу, в кишечник поступают олигосахариды, освобожденные а-амилазой, а также олигосахариды, содержащиеся в пище.
Кишечный и панкреатический соки из желудочно-кишечного тракта рыб содержат помимо у-амилазы мальтазу, сахаразу, лактазу, которые гидролизуют олигосахара до мономеров. Скорее всего, а-амилазная активность у рыб с желудком проявляется в пилорических придатках, а у безжелудочных рыб - раньше - в самом начале туловищной кишки.
Карбогидразы, осуществляющие заключительные этапы гидролиза углеводов, связаны с апикальной мембраной энтероцитов. Они синтезируются в цитоплазме энтероцитов в зоне базальной мембраны, затем транспортируются к апикальной мембране и встраиваются в нее в виде гликопротеиновых комплексов. Они имеют довольно большую молекулярную массу (около 200000) и существуют в виде макромолекулярных комплексов: мальтаза - у-амилаза, мальтаза - сахараза, сахараза - изомальтаза.
Гидролиз жиров. Пищевые жиры представлены чаще всего триглицеридами животного и растительного происхождения.
Начало гидролизу молекул триглицеридов дает панкреатическая липаза в полости кишки, в результате чего образуются моноглицерид и жирные кислоты. Процесс зависит от наличия желчных кислот (см. схему).

Панкреатическая фосфолипаза, активируемая трипсином, гидролизует эфирную связь глицерина и жирных кислот с образованием лецитина, изолецитина и жирных кислот.
Окончательное переваривание 2-моноглицерида осуществляют ферменты апикальной мембраны энтеропитов - моноглицерид-липаза, эстераза и др.