ЗВУКОВЫЕ СИГНАЛЬНЫЕ ПРИБОРЫ И ИХ ЭЛЕКТРИЧЕСКИЕ СХЕМЫ - ЭЛЕКТРОННЫЕ ДВЕРНЫЕ ЗВОНКИ
создание документов онлайн
Документы и бланки онлайн

Обследовать

Администрация
Механический Электроника авиация автомобиль сооружения
биологии
география
дом в саду
история
литература
маркетинг
математике
медицина
музыка
образование
психология
разное
художественная культура
экономика




















































ЗВУКОВЫЕ СИГНАЛЬНЫЕ ПРИБОРЫ И ИХ ЭЛЕКТРИЧЕСКИЕ СХЕМЫ - ЭЛЕКТРОННЫЕ ДВЕРНЫЕ ЗВОНКИ

Механический Электроника


Отправить его в другом документе Tab для Yahoo книги - конечно, эссе, очерк Hits: 3168


дтхзйе дплхнеофщ

ОБУЗДАНИЕ НЕВИДИМОЙ ПЕТЛИ
Встряхивающие формовочные машины
Выбор материала зубчатых и червячных передач
Влияние химических элементов на свойства стали и чугуна
Принципы построения систем телемеханики
ЧЕТЫРЕХКАНАЛЬНАЯ ЦВЕТОМУЗЫКАЛЬНАЯ ПРИСТАВКА
ПРОВЕРОЧНЫЙ РАСЧЕТ БЫСТРОХОДНОГО ВАЛА
Системы сигнализации. Классификация. Линейная сигнализация.
Особенности геометрических и конечноэлементных моделей, используемых в расчетной схеме
Пленочные интегральные микросхемы
 

ЗВУКОВЫЕ СИГНАЛЬНЫЕ ПРИБОРЫ И ИХ ЭЛЕКТРИЧЕСКИЕ СХЕМЫ

Для привлечения внимания или вызова обычно ис­пользуют световые или звуковые сигнальные устройства: электрические звонки, зуммеры и другие источники сиг­налов. Следующей ступенью развития стали звонки типа «бим-бом». Преимущество большинства из них состоит в том, что звуковой сигнал возникает лишь в момент на­жатия кнопки звонка, а для каждого следующего сигнала необходимо повторное нажатие.

Однако сигнал у большинства таких устройств явля­ется непродолжительным, поэтому часто не привлекает достаточно внимания, а иногда остается и вовсе не услы­шанным. У новых образцов сигнальных устройств с ртут­ными контактами за нажатием кнопки следует двойное звучание. Отдельные типы звонков снабжены электро­лампами, подающими одновременно со звуковым и све­товой сигнал, что особенно удобно для шумных помеще­ний.

Электроника позволяет заменить традиционные элек­трические звонки устройствами, выполненными на тран­зисторах и интегральных микросхемах, и получить в ре­зультате приятные и мелодичные сигналы, например в виде фрагментов музыкальных мелодий.

ЭЛЕКТРОННЫЕ ДВЕРНЫЕ ЗВОНКИ

Простейшие транзисторные зуммеры. На рис. 1,а приведена схема транзисторного генератора, применяе­мого вместо электрического дверного звонка. Сечение сердечника автотрансформатора 14X14 мм; количество витков в обмотках: п1 = 35; n2 = 60; n3 = 20; диаметр про­волоки 0,42 мм. Требуемое значение частоты звука мо­жет быть установлено изменением емкости конденсато­ра С. Потребляемый генератором ток при напряжении 4,5 В составляет 160 — 200 мА.



Рис. 1. Схемы дверного звонка с транзисторным генератором (а) и генератором на однопереходном транзисторе (б)

Отрегулированные на различную частоту транзистор­ные зуммеры подают существенно отличающиеся по звучанию сигналы, что особенно удобно при установке таких устройств в помещениях с общим входом,

На рис. 1, б изображена схема электронного дверного звонка с однопереходным транзистором, которая обеспе­чивает подачу сигналов различного звучания при нажа­тии кнопки на передней G1 и задней G2 дверях (напри­мер, в кухне и прихожей). Силу звука можно повысить, изменив номиналы резисторов или увеличив напряжение питания (до 24 В).

Электронные звонки с использованием мультивибра­тора. На рис. 2, а представлена схема электронного звон­ка с самовозбуждающимся мультивибратором. Транзи­сторы Т1 и Т2 входят в схему мультивибратора. При нажатии на кнопку G мультивибратор начинает генери­ровать колебания, а акустический индикатор (динамик), находящийся в коллекторной цепи ТЗ, воспроизводит звук, высота которого соответствует частоте этих коле­баний.

На схеме, изображенной на рис. 2, б, при нажатии на кнопку G на мультивибратор, состоящий из транзисторов 77 и Т2, подается напряжение питания 9 В. Динамик, подключенный к коллектору транзистора ТЗ, воспроизводит звук соответствующей частоты. Частота звука мо­жет быть изменена соответствующей регулировкой по­тенциометра Р.

На рис. 2, в показан электронный дверной звонок, действующий при различных значениях напряжения.

Рис. 2. Электронные дверные звонки с самовозбуждающимся мульти­вибратором:

а — схема передачи прямоугольных сигналов из коллектора транзистора Т2; б — схема передачи прямоугольных сигналов из эмиттера транзистора Т2; в — электронный дверной звонок, действующий при различных значениях напря­жения

Мультивибратор, как и в предыдущих случаях, образуют транзисторы Т1 и Т2. До тех пор, пока напряжение на входных клеммах 1 и 2 не достигнет достаточного для срабатывания транзистора Т1 значения, динамик не включается.

Звонок двойного звучания типа «бим-бом» может быть собран по схеме, приведенной на рис. 3, с использованием мультивибратора. К ее преимуществам можно отнести изменяемость ритма, периода колебаний, а также про­должительности паузы между двумя звуковыми сигна­лами.

На схеме мультивибратор образован транзисторами 77, Т2. Период возникновения прямоугольных импульсов можно регулировать потенциометрами Р1 и Р2. Коэффи­циент их заполнения, а также длительность устанавлива­ют, изменением сопротивления резистора в базовой цепи. С помощью подстроечных потенциометров Р1 и Р2 про­должительность звучания звонка регулируется в диапа­зоне от 3 с до непрерывного сигнала.

Рис. 3. Схема, использующая мультивибратор для получения разного звукового эффекта звонков типа «бим-бом»

Колебания через эмиттерный повторитель, построенный на транзисторе ТЗ, поступают на каскад на транзи­сторе Т4, в результате чего звонок типа «бим-бом» сра­батывает. При нажатии на кнопку транзистор ТЗ откры­вается и открывает транзистор Т4, что приводит к возникновению первого звукового сигнала. Если открывается транзистор Т2, то транзисторы ТЗ и Т4 запира­ются, соответственно разрывается цепь звонка и следует звуковой сигнал другой тональности. В соответствии с ча­стотой колебаний мультивибратора время звучания сиг­нала зависит от продолжительности нажатия на кнопку звонка. Диод D5 защищает транзистор Т4 от индуктив­ных всплесков напряжения.

На рис. 4 показана схема электронного звонка трой­ного звучания с использованием мультивибратора. При нажатии на кнопки G1, G2 и G3 в динамике слышны зву­ки частотой 2, 1 и 0,3 кГц соответственно. Преимущество ее в том, что при соединении кнопок и сигнального уст­ройства требуется всего одна пара проводов.

Рис. 4. Электронный звонок тройного звучания

Рис. 5. Электронные звонки на интегральных микросхемах:

а — с использованием двойного таймера типа 556; б — назначение выводов интегральной микросхемы: 1 — разрядное; 2 — порог; 3 — управляющее напря­жение; 4 — сброс; 5 — выход; 6 — триггер; 7 — земля; 8 — триггер; 9 — выход; 10 — сброс; И — управляющее напряжение; 12 — порог; 13 — разрядка; 14 — + Unит; в — с двумя таймерами типа 555: 1 — самовозбуждающийся мульти­вибратор; 2 — моностабильный мультивибратор



Мультивибратор приводит в действие динамик через составные транзисторы ТЗ и Т4, образующие усилитель по схеме Дарлингтона. При отсутствии напряжения на входе (Uвх = 0) транзисторы Т1 и Т2 закрыты. Если же имеется положительное напряжение, то мультивибратор вступает в работу и генерирует колебания, частота кото­рых зависит от значения приложенного напряжения. При повышении входного напряжения она возрастает, так как возрастает ток, проходящий через резисторы R1 и R2,и поэтому быстрее заряжаются конденсаторы С1 и С2. При нажатии на кнопку G1 напряжение на входе муль­тивибратора составляет +24 В, а при нажатии на кнопки 02 и СЗ — соответственно UTUZ1 = 24 — 10=14 В и UTUZ2 = 24 — 18 = 6 В.

На рис. 5 показаны схемы электронных звонков со специальными звуковыми эффектами.

Один из таймеров интегральной микросхемы типа 556 (рис. 5, б) работает в качестве самовозбуждающегося мультивибратора. Вывод 5 соединяется с вводом 8 дру­гого таймера (рис. 5, а), работающего по схеме моноста­бильного мультивибратора. Частота импульсов, образо­ванных самовозбуждающимся мультивибратором, опре­деляется параметрами элементов схемы R1 и С1. На выводной клемме 9 образуются соответствующие выход­ные импульсы. Их продолжительность регулируется эле­ментами R3 и СЗ.

Рис. 6. Электронный звонок, имитирующий звук гонга:

а — схема соединений; б — структурная схема

Здесь моностабильный мультивибратор работает в ка­честве делителя частоты, что сопровождается проявле­нием специальных звуковых эффектов. Сила звука в ма­лой степени может быть изменена с помощью потенцио­метра R4. Для достижения поставленной цели должны быть изменены параметры элементов схемы R1 и СЗ.

Очень интересный звуковой эффект может быть полу­чен при нажатии кнопки G и установке вместо резисто­ров R1 и R3 фоторезистора (например, типа LDR03). Звуковой сигнал в этом случае может изменяться в зависимости от степени освещенности фоторезистора кар­манным фонарем. Варьированием характеристики R1 модулируется частота самовозбуждающегося мультивиб­ратора, а изменением характеристики резистора R3 до­стигается звучание в виде тремоло.

Электронные звонки, имитирующие звук гонга. Вместо традиционного электрического звонка в качестве источ­ника звука прекрасный эффект дает применение элек­тронного гонга с его характерным гармоничным звуча­нием. Схема, приведенная на рис. 6, функционирует сле­дующим образом. На вход каскада усиления, именуемого модулярным усилителем (транзистор ТЗ), поступают прямоугольные импульсы от самовозбуждающегося муль­тивибратора (Т1 и Т2} с частотой 1 кГц.

Рис. 7. Схема, позволяющая имитировать звук гонга: а — схема соединений; б — формы выходных сигналов при различных значе­ниях емкостей

В этом случае на выходе модуляторного усилителя (при условии неизменности его питающего напряжения) получаем монотонный сигнал частотой 1 кГц, который из динамика слышен как звук неизменной интенсивности. Прямоугольный сигнал нужной частоты интегрирует­ся, и таким образом получается напряжение треугольной формы (т. е. сначала нарастает, а затем экспоненциально спадает). Дальше оно поступает на модулятор, что и поз­воляет добиться характерного звучания.

Когда транзистор Т2 закрыт, конденсатор СЗ заряжа­ется через коллекторное сопротивление резистора R4 и диод D. Постоянная времени зарядки является функ­цией произведения R4-C3. При переходе мультивибрато­ра в новое состояние транзистор Т2 открывается и его коллекторное напряжение уменьшается. Одновременно конденсатор СЗ начинает разряжаться через коллектор­ную цепь транзистора ТЗ. Диод D препятствует разрядке конденсатора СЗ через транзистор Т2. Таким путем мо­жет быть увеличено значение постоянной времени раз­рядки конденсатора.

Экспоненциально нарастающее, а затем спадающее напряжение модулирует по амплитуде сигнал в каскаде усиления. Изменением емкости конденсатора С1 мультивибра­тора можно регулировать время нарастания, а конденса­тора С2 — время спада сигналов. Тем самым обеспечива­ется получение сигнала гонга требуемого звучания. Изменением частоты мультивибратора достигается раз­личная высота звука. Например, более низкий и продол­жительный он получается при 300 — 400 Гц. В случае же использования больших (1000 — 2000Гц) частот звучание более резкое и менее продолжительное.



На рис. 7 показана еще одна схема, позволяющая по­лучить звук, подражающий гонгу. Ее построение сходно с изображенным на предыдущем рисунке. На вход моду­ляторного каскада на транзисторе ТЗ подается прямо­угольный сигнал мультивибратора, а к его выходу подсое­диняется соответствующий усилитель. Состоящий из тран­зисторов Т1 и Т2 задающий мультивибратор в данном случае работает на частоте 1 Гц. Изменяя емкости С1 и C2t получаем возможность регулировать в широких пре­делах частоту и коэффициент заполнения прямоугольного сигнала. Звучание гонга в каждом новом случае может быть различным. Меняя номинал конденсатора С1, регу­лируют время спада, а конденсатора С2 — время нара­стания сигнала. Высота же звука зависит от частоты мультивибратора. Формы выходных сигналов при раз­личных значениях емкостей приведены на рис. 7, б.

Рис. 8. Электронный 1музьгкальный звонок: а — схема соединений; б — структурная схема

Электронные музыкальные звонки. На рис. 8 приве­дены схема соединений и структурная схема электронно­го звонка с приятным музыкальным звучанием. Здесь задающий самовозбуждающийся мультивибратор, со­стоящий из транзисторов Т1 и Т2, выдает импульсы через 2,5 — 3 с. С коллектора транзистора Т2 сигнал поступает на схему интегрирования, состоящую из элементов R6, СЗ. При заряде конденсатора СЗ и его разряде во время работы задающего мультивибратора сигнал на базе тран­зистора ТЗ экспоненциально возрастает или соответствен­но уменьшается. Таким образом, осуществляется управле­ние мультивибратором звуковой частоты, состоящим из транзисторов Т4 и Т5.

Рис. 9. Музыкальный звонок, имитирующий голоса птиц

Если на резистор R8 подать отрицательное напряже­ние, то частота колебаний мультивибратора составит при­мерно 1000 Гц. В случае, когда прибор состоит только из мультивибратора звуковой частоты и усилителя Дарлинг­тона, выдается однообразный (однотонный) сигнал. Если же схема собрана полностью, из динамика слышен мяг­кий, похожий на сирену звук. Таким образом, может быть получено двойное звучание и без использования интегра­тора. При нажатии кнопки звонка достигается постепен­ное нарастание силы звука, обеспечиваемое введением в схему RС-цепочки (R11С6) с параметрами 820 Ом и 200 мкФ.

На рис. 9 приведена схема музыкального звонка, под­ражающего пению птиц. Она питается выпрямленным напряжением 8В или постоянным 12 В. Динамик выдает звуковой сигнал продолжительностью от 2 до 14 с в зави­симости от емкости конденсатора С.

Основу схемы составляет генератор с индуктивной связью. Исходная частота определяется элементами СЗ, R4, R5. Она уменьшается с увеличением емкости конден­сатора СЗ. Если соединить вторичную обмотку трансфор­матора Тр2 с выключателем K, то можно изменять тембр звука. Потребление тока с вторичной обмотки звонково­го трансформатора происходит только в течение его работы и составляет 8 — 15 мА. Трансформатор Тр2 имеет следующие характеристики: количество витков в обмот­ках 1400 и 2X400 соответственно; диаметр провода первичной обмотки 0,05, вторичной 0,08 мм; толщина сер­дечника 7 мм. Предельная мощность используемых рези­сторов 1/10 Вт.

Вместо p-n-p-транзистора (как показано на рис. 9) может быть использован и другой тип (n-р-n), однако тогда необходимо переменить полярность подключения электролитических конденсаторов и диода D1.

Первое место среди многоголосных формирователей сигналов принадлежит «музыкальным» генераторам. Ра­ботают они следующим образом. При нажатии кнопки и определенных условиях запуска включается электрон­ный счетчик. Во время процесса подсчета импульсов вы­ходные сигналы с дешифратора подключают переменные резисторы генератора, задающие определенную частоту. При этом возникают мелодии, составленные из первых звуков различных песен.

Рис. 10. Музыкальный звонок на интегральных микросхемах КМОП-типа

Для построения аналогичных схем используют раз­личные интегральные микросхемы, например четырех­разрядный регистр сдвига SN 74195N (каждый из реги­стров имеет четыре звуковых сигнала, один из которых необходим для установки куля), двоично-десятичный счетчик SN 7490N с дешифратором SN 7442 («1 из 10»), четырехразрядный двоичный реверсивный счетчик SN 74193 N с дешифратором-демультиплексором SN 74154 N (15 звуковых сигналов, 1 — обратного дейст­вия) и др.

Рис. 11. Музыкальный звонок, воспроизводящий десять последова­тельных звуков:

a — «музыкальный» генератор: 1 — генератор, задающий такт; 2 — счетчик; 3 — - сигнал-генератор; 4 — схема программирования; 5 — устройство декодиро­вяния; б — схема программирования мелодий, приведенных в нотной записи



На рис. 10 показан музыкальный звонок, построенный на интегральных микросхемах КМОП-типа, который при нажатии на кнопку проигрывает первые восемь звуков темы оды «К радости» Бетховена. Тактовые сигналы из интегральной микросхемы IC5 поступают в десятичный счетчик с дешифратором типа CD 4017 (IC1), который в основное состояние приводится при включении схемы посредством элементов C1, R1. Выход 0 не используется, поскольку первый тактовый импульс продолжительнее остальных. Выход 9 (11-и вывод) служит для выключе­ния схемы после окончания мелодии (посредством IC4, a, b и транзистора Т1).

Оставшиеся восемь импульсов одинаковой продолжи­тельности используются для стробирования самовозбуж­дающихся мультивибраторов, образованных из интегральных микросхем IC2, IC3 (тип 4011) и соединитель­ных элементов. Таким образом, звуки раздаются в опре­деленной последовательности. Потенциометры Р1Р4 настроены так, чтобы можно было получить четыре зву­ковых сигнала нужной высоты. Для разделения звуков выход звукового генератора коммутируется тактовым сигналом. После этого сигнал через потенциометр регу­лировки звука Р5 подается на усилитель звуковой часто­ты, состоящий из транзисторов Т2 и ТЗ.

«Музыкальный» генератор, изображенный на рис. 11, образует десять последовательно звучащих сигналов, что может быть лейтмотивом музыкального фрагмента.

Схема состоит из сдвоенного таймера типа 556 (или из двух таймеров типа 555), двух декодирующих уст­ройств типа SN7441 и одного двоично-десятичного счетчика типа SN 7490. Питающее напряжение таймера типа 556 может быть выбрано произвольно в пределах от 5 до 15В. Все интегральные микросхемы в данном случае питаются напряжением 5 В.

Микросхема IC1A работает в качестве генератора тактовых сигналов. Этот самовозбуждающийся мульти­вибратор производит сигналы очень низкой частоты, оп­ределяемой номиналами элементов R2 и СА (T=0,25с).

Выходной сигнал задающего генератора (вывод 5) поступает на вывод 14 счетчика. Кроме того, в положении b выключателя K этот сигнал поступает и на вывод 10 сигнал-генератора. В этом случае десять звуков мы слы­шим одновременно, что воспринимается как один гармо­ничный аккорд. Когда же выключатель K находится в по­ложении а, звуки следуют один за другим, как это бы­вает при исполнении мелодии.

Рис. 12. Частота выходного сигнала в зависимости от значения емкости програм­мирующего конденсатора

Генератор тактовых импульсов может работать в двух режимах. Если вывод ЕС (или 4} подключить к питаю­щему напряжению 5 В, схема будет работать непрерывно. Если же контакт ЕС оставить свободным (не подключать никуда), то после одноразового проигрывания мотива, т. е. по прошествии 10-0,25 = 2,5 с, работа генератора прекращается.

Счетчик IC2 (тип SN 7490) управляется таким обра­зом, что на его выводах 12, 1, 9, 8 и 11 возникает пять сигналов, управляющих десятичными декодирующими устройствами IC3 и IC4 (тип SN7441). На десяти выхо­дах декодирующего устройства возникают сменяющие друг друга импульсы продолжительностью 0,25 с. Эти выходы подключены к входу конденсаторной схемы про­граммирования. Когда какой-либо из выходов IC4 стано­вится активным, в цепь сигнал-генератора включается соответствующий ему конденсатор. Сигнал-генератор представляет собой самовозбуждающийся мультивибра­тор, который построен на второй половине интегральной микросхемы таймера типа 556. Его частота определяется номиналом резистора R4 (42 Ом) и емкостью конденса­тора в цепи программирования.

На рис. 12 приведена зависимость выходной частоты сигнал-генератора от емкости программирующего кон­денсатора. По кривой можно определить значения емко­стей для разных звуков и мелодий, нотная запись кото­рых приведена на рис. 11,6. Десять конденсаторов не нужны, если звуковой сигнал одной частоты повторяется неоднократно. В схеме программирования PR1, напри­мер, один и тот же конденсатор (38 нФ) используется для третьего и пятого звуковых сигналов.

Для звуков, которые на октаву выше, частоту надо умножить, а значение сопротивления резистора R4 разде­лить на 2. Для звуков, которые на октаву ниже, — наобо­рот. Продолжительность отдельных сигналов определя­ется декодирующим устройством IC3.

Длительность семи первых звуковых сигналов от трех по­следних в 2 раза больше, так как емкость конденсатора Св отличается от емкости СА. Ча­стота тактозадающего мульти­вибратора IC1A зависит от значений произведения R2-CB или R2-CA- Обычно конденса­тор бывает соединен с землей. В нашем случае декодирую­щее устройство соединяет его с землей в нескольких точках. По схеме, например, видно, что выводы 10, 1 и 2 заземляют конденсатор СА (10 мкФ). Выход сигнал-генератора надо соединить со входом уси­лителя звуковой частоты. Кон­денсатор СО вместе с рези­стором R5 образуют интег­рирующую цепочку. Изме­няя значение СО, можно регулировать тональность сиг­нала.