Несобственные точки Дезарга
создание документов онлайн
Документы и бланки онлайн

Обследовать

Администрация
Механический Электроника
биологии
география
дом в саду
история
литература
маркетинг
математике Физика информатики химия
медицина
музыка
образование
психология
разное
художественная культура
экономика





















































Несобственные точки Дезарга

математике



Отправить его в другом документе Tab для Yahoo книги - конечно, эссе, очерк Hits: 822



дтхзйе дплхнеофщ

НЕСОБСТВЕННЫЕ ИНТЕГРАЛЫ
Интеграл по ориентированной фигуре от векторной ф-ции
Фигуры золотого сечения
Расчётное задание по математической статистике
Упорядочение при наличии ограничений на возможные варианты расписаний
ОПРЕДЕЛЕНИЕ КОРНЕЙ АЛГЕБРАИЧЕСКИХ УРАВНЕНИЙ - МЕТОДОМ ИТЕРАЦИЙ
Среднее квадратическое отклонение
Бесконечные произведения (продолжение)
ОРТОГОНАЛЬНЫЕ ЛИНЕЙНЫЕ ОПЕРАТОРЫ
«Дифференциальные уравнения»
 

Несобственные точки Дезарга

Выявленные, в процессе рассмотрения задачи деления отрезка в крайнем и среднем отношении, фигуры могут образовывать сами или служить основой для построения множества фигур любой из существующих геометрий: физической (динамической), статико-динами-ческой (похоже, биологической)  и статических. Если статические геометрии хорошо изучены и, в частности, статическая геометрия Евклида известна уже более двух тысячелетий, то возможность существования статико-динамической и физической геометрии даже не предполагается. А между тем развитие основ статических геометрий не могло обойти стороной статико-динамическую геометрию. И естественно, что ее элементы не могли не проявить себя при этом разви 252f59ic тии. И они проявились. Но в такой форме, что динамика фигур, их деформация и движение оказались скрытыми от рассмотрения, а само движение, происходящее в рамках кадрированного времени, оказалось не обнаруженным. И потому статико-динамическая геометрия получила развитие в форме хорошо известных проективных геометрий. Очень коротко, ориентируясь на [27], рассмотрим некоторые положения проективных геометрий и покажем, что в данных геометриях «неподвижные фигуры» обладают свойством кадрированного движения, характерного для полудинамических систем.

Еще раз отметим, что в статических и в статико-динамической геометриях отсутствует время как свойство тел и потому всякое движение элементов и фигур статико-динамической геометрии отображается как фиксация (стоп-кадр) их пространственного положения в неопределенное мгновение. Сами фигуры в любой фиксированный момент времени неподвижны. Изменение их является кадрированным (как и кадров на кинопленке). Кадр фиксирует изменение (деформацию) в процессе движения фигуры в неопределенное мгновенье.



В статической геометрии, как уже отмечалось, элементы фигур не связаны между собой. Они могут принадлежать или не принадлежать фигуре, существуют вне пространства и времени и остаются неизменными как в фигуре, так и за ее пределами. В статико-динамической (полудинамической) геометрии все элементы фигуры принадлежат фигуре, находящейся между базисами (базисной прямой и точкой опоры), и при изменении положения одного базиса все остальные элементы фигуры пропорционально меняются (деформируют). Фигура в статико-динамической (биологической) геометрии является отдельной системой. Все ее элементы связаны между собой и неотрывны от нее. Фигура  всегда находится внутри и под действием некоторого плотностного анизотропного поля. Анизотропное поле образуется как базисом, так и опорной точкой, и фигуры обычно оказываются в плотностном поле одного из них, либо обоих (многих).

Опорная точка есть некоторое отдельное, плотностное образование вроде геометрической гравитирующей точки. По своему геометрическому воздействию на окружающие фигуры опорная точка подобна гравитирующему телу. Фигура, находящаяся в «поле» опорной точки, некоторым образом «взаимодействует» с этим полем. Движение фигуры в поле сопровождается воздействием поля на фигуру, вызывающим ее деформацию и наоборот.

Базисом может являться либо гравитирующая точка, либо линейная последовательность многих близрасположенных гравитирующих точек, которая является аналогом линии, либо плоскость из таких же гравитирующих точек. Базисная «прямая» может представлять собой линию различной кривизны, в том числе и окружность. Причем опорная точка или точки опоры могут находиться как снаружи окружности, так и внутри ее. Пропорционирование фигур и их элементов внутри такой окружности и вне ее производится по общим правилам.

Отметим, что могут существовать фигуры с одним базисом, при этом второй базис как бы потенциально существует на бесконечности. В этом случае сама фигура, вместе с базисами представляет собой единую систему взаимосвязанных элементов или фигур с точкой опоры или без оной, «функционирующую» в определенном анизотропном пространстве и структурно зависящую от положения в нем. Точка опоры S – может быть либо опосредованно точкой (базисная точка), либо плотностной прямой на плоскости, видимой с торца, и всегда является несобственной точкой Дезарга. Изменение положения точки опоры в плотностном пространстве с одной стороны образует новое пространство, отображая иллюзию вневременного движения. А с другой деформирует все элементы перемещаемой фигуры пропорционально структуре создаваемого пространства. Это свойство пропорционального изменения фигуры и ее элементов в зависимости от места расположения точки опоры сохраняется и в том случае, когда элемент «вырезается» (вырывается) из фигуры, проявляя себя как часть базиса. И его деформация при перемещении самого элемента или точки опоры рассматривается вне зависимости от фигуры, из которой он изъят, но по законам пропорционирования фигуры. Более того, сама фигура в этом случае тоже деформирует вместе с вырезанным элементом, но в скрытой форме и процесс этой деформации можно воспроизвести, если даже неизвестна начальная форма фигуры, но сохранилась хотя бы часть ее элементов.

Возможность рассмотрения пропорционирования отдельно взятых элементов фигуры при их перемещении в плотностном поле опорной точки и базиса и послужила основой возникновения проективной геометрии, – геометрии, описывающей перемещение и деформации, вырезанных из фигур единичных элементов. В ней, как уже упоминалось ранее, рассматривается гармоническое отношение четверки точек, «выхваченных» из некоторой фигуры. Однако за гармоническим пропорционированием точек скрывается пропорционирование отрезков, которые находятся между этими точками. Сами же отрезки являются элементами скрытых фигур, которые «ускользнули» от рассмотрения на начальном этапе построения проективной геометрии и потому оказались не востребованными в ее основах. Познакомимся в общих чертах с обстоятельствами, обусловившими появление скрытых фигур  и гармонизацию отношению четверки точек.



Начнем с параллельных, которые при их перспективном продолжении (т.е. в движении, которое никогда не кончается), на горизонте (на бесконечности) сходятся в точку, как бы пересекаются. Понятно, что точки пересечения нет, что это условность и параллельные остаются параллельными на бесконечности, но эффект как бы существует и Дезарг предложил считать точки мнимого «пересечения» параллельных в геометрии проекциями «бесконечно удаленных» точек. Более того, он также предложил считать бесконечно удаленные точки пересечения прямых – несобственные точки, равноправными всем остальным точкам. Таким образом, как говорится в [27]: « … Дезарг дополняет (!? Авт.) евклидово пространство новыми элементами: несобственными (бесконечно удаленными) точками, а также еще и плоскостью, на которой лежат все несобственные точки, – несобственной плоскостью. …И предлагает считать бесконечно удаленные точки равноправными (со всеми остальными) точками».

Прежде всего, Дезарг не дополняет евклидово пространство, поскольку таковое здесь не существует, а образует свое, вводя несобственное пространство и несобственные точки, и получая анизотропное плотностное пространство. Постулировав существование несобственной точки, Дезарг тем самым постулировал наличие в геометрии плотностного центра – основы аксиомы о динамических параллельных. Центр – точку, в которую входят параллельные как бы соединяясь в своем бесконечном движении. Точка «пересечения» параллельных на плоскости есть плотностная точка динамической геометрии. Точка, с приближением к которой пространство, окружающее ее, уплотняется, становясь проективным аналогом природного пространства, состоящего из физических точек различной плотности (эфира). Тем самым он, неявно, постулировал существование плотностного пространства и совершенно нового геометрического качества – плотностности, неизвестного в евклидовой геометрии. Принятое Дезаргом равноправие точек пересечения параллельных с точками евклидовой геометрии, не находящимися на бесконечности, аннулировало качество плотностности и формально превратило эти плотностные анизотропные точки, в изотропные точки евклидова пространства, которыми можно было оперировать по законам статической геометрии. Равноправие несобственных точек с евклидовыми точками скрыло их динамический характер.

Это «дополнение евклидова пространства» равнозначными несобственными точками и несобственным пространством требовало изменения представления о геометрическом пространстве, о точке, о взаимосвязях элементов фигур и о возможности движения в статической геометрии. Однако пересмотра не последовало. Постулирование несобственных точек и плоскостей обусловило появление новой статической проективной геометрии. В ней параллельные прямые отсутствуют. («У Дезарга две прямые одной плоскости всегда пересекаются. Ограничений никаких» [26]).

Повторимся – поскольку, по определению, параллельные прямые пересекаться не могут, то постулирование их пересечения вносит в неявной форме в евклидову геометрию противоречащее ей качество –кадрированное движение. Качество, которое свидетельствует о замедлении физического времени при движении к плотностному центру и полностью изменяет структуру статической геометрии, обусловливая возрастание «плотностности» пространства к области «пересечения параллельных прямых». В результате изотропное евклидово пространство автоматически, помимо нашего понимания и желания, становится пространством анизотропным, пространством, деформирующим тела, помещаемые в него при перемещении из одной области в другую. И это изменение качества евклидова пространства привело к появлению геометрического движения и к деформации фигур и их элементов, не замеченных современниками:




Во-первых, потому, что в проективной геометрии рассматривалось перемещение не фигур, а точек, которые в движении не деформируются. Характерный пример – «гармоническая четверка точек». При перемещении их в пространстве проективной геометрии, отрезки между точками изменяются гармонически, а это изменение формулируется как отношение между точками.

Во-вторых, потому, что движение, по современным представлениям, происходит только в непрерывном времени, а время в статической геометрии отсутствует по определению. 

В-третьих, не предполагалась даже возможность динамических изменений геометрических фигур.

В-четвертых, преобразование и деформация фигур в проективном пространстве было подменено так называемым сложным отношением четырех точек, за которым скрывалось отношение расстояний между точками, а не точек, и за этими точками существование геометрических фигур в пространстве даже не просматривалось. Понятие «сложное отношение четырех точек» тоже введено Дезаргом как простейшая величина, сохраняющаяся при проектировании, т.е. являющаяся инвариантом проективной геометрии.

Повторимся, – постулирование пересечения параллельных на бесконечности означает введение в статику элементов динамической геометрии. Для «достижения» точки «пересечения» параллельных на бесконечности им приходится двигаться в изменяемом плотностном пространстве. Т.е. перемещаться в ином пространственном качестве, внося в статическую геометрию элементы динамики. При этом параллельные динамической геометрии не пересекаются, а «входят» в плотностную точку динамической геометрии и никуда из нее не выходят. Именно плотностная точка и является физическим аналогом несобственной точки Дезарга. К тому же существование несобственной точки не является фактом пересечения параллельных, а только свидетельством некоего сближения линий на горизонте в процессе бесконечного движения вглубь плотности, воспринимаемого как плотностная точка. И поэтому несобственные точки никогда не могут быть равноправными и равнозначными с геометрическими точками, поскольку несобственные точки существуют как отображение в геометрии плотностной телесности пространства. Несобственные точки – порождение динамической аксиомы о параллельных. Они суть свидетельства бесконечного кадрированного геометрического движения фигур в плотностном поле, которое и есть время. С их введением в геометрию последняя качественно изменяется. Статическая геометрия Евклида приобретает динамику, а вместе с ней и новое проективное пространство, – плотностное анизотропное пространство, в котором фигуры и их элементы, перемещаясь, деформируются, т.е. взаимодействуют с пространством.

С появлением несобственных точек и плоскостей, обусловивших возможностью перемещения базисных фигур, в геометрии появилась и возможность перемещения отдельных элементов; точек, отрезков, фигур, причем таким образом, что наличие фигур, в которые эти элементы входили, становилось незаметным, скрытым. И существование таких скрытых фигур сохраняется на протяжении всего существования проективных геометрий. Рассмотрим, как это произошло, какие фигуры оказались скрытыми, и какие последствия обусловило существование несобственных точек  в геометрии.